The Discrete Fourier Transform of Symmetric Sequences

Symmetric sequences arise often in digital signal processing. Examples include symmetric pulses,
window functions, and the coefficients of most finite-impulse response (FIR) filters, not to mention the
cosine function. Examining symmetric sequences can give us some insights into the Discrete Fourier
Transform (DFT). An even-symmetric sequence is centered at n = 0 and Xeven(Nn) = Xeven(-n). The DFT of
Xeven(n) is real. Most often, signals we encounter start at n = 0, so they are not strictly speaking even-
symmetric. We'll look at the relationship between the DFT’s of such sequences and those of true even-
symmetric sequences. Note: for basics of using the DFT, see my last post [1].

Let x(n) be a causal sequence as shown in Figure 1 (top). Let Xeven(n) be an even-symmetric version of
x(n), defined over n =-8:7, as shown in Figure 1 (bottom). This sequence is centered at n =0, and the
first non-zero value occurs at n =-3. The sequence is also referred to as a non-causal sequence, because
it begins before n = 0. Mathematically, the most straightforward way to find the Discrete Fourier
Transform (DFT) of this sequence would be to evaluate the DFT formula (see Appendix) over n =-8: 7.
We would then find that the spectrum Xeven(k) is real. However, in this article, we’ll compute the DFT
using the standard time index range of n= 0: N-1, which allows us to use the Matlab Fast Fourier
Transform (FFT) function. We'll find Xeven(k) using two different methods.

Method 1: Time Shift

Given the causal sequence x(n), we can use the time-shifting property of the DFT to find the DFT of

Xeven(n). For x(n) with DFT X(k), the time-shifting property is given by (see Appendix) :
_ —j2mNgk/N
x(n — Np) e o®/ VX (k) (1a)

Where X(k) is the DFT of x(n) and No is delay in samples. We define normalized radian frequency
w = 2mtf/fs, where fs is sample frequency in Hz and f = kfs/N. We can then also write:

x(n—No) = e JoNo X (w) (1b)

Consider x(n) and Xeven(n) shown in Figure 1. Xeven(n) is equal to x(n) advanced in time by No = 3 samples,
so:

Xepen(M) = x(n + Ny) 2)
Since we are advancing x(n) by No samples, Equation 1b becomes:

Xeyen () = x(n + Ny) I(E)" eijOX(w) 3)



Thus, the DFT of Xeven(n) is:
Xeven(w) = ej“’NOX(w) 4)
We can also write the converse of Equation 4:

X(w) = e J@No Xepen(w) %)

This equation shows that the DFT of a sequence x(n) having even symmetry with respect to its center
sample is a real spectrum Xeven(w) multiplied by a linear phase shift. An example of this is the frequency
response of a symmetric FIR filter with an odd number of taps. Given an even-symmetric filter heven(n)
with real frequency response Heven(w), the causal filter’s frequency response is linear-phase:

H(w) = e J@No Hepen(w) (6)

where No= (number of taps — 1)/2. A symmetric FIR with an even number of taps also has linear phase

[2].
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Figure 1. Top: Causal sequence x(n). Bottom: Even-symmetric sequence Xeven(n).



Method 1 Example

In this example, we use Equation 4 to find the DFT of Xeven(n) shown in Figure 1 (bottom), given the

causal sequence x(n) of Figure 1 (top):

x(n) = [2 8 12 13 1282 000000O0O0O01/57.

The Matlab code is listed below. Note that the .* operator performs element-by-element multiplication

of two vectors.

fs= 1; % Hz sample frequency

N= 16; % samples length of x

Xx= [2 8 12 13 12 82 00000000 O0]/57; % causal sequence
% compute DFT of causal x

X= fft(x,N); S DFT

k= 0:N-1;

f= k*fs/N;

frequency index
Hz frequency

% compute DFT of x even using time shift property of DFT

w= 2*pi*f/fs % rad normalized radian frequency
No = 3; % samples time advance
Xeven= exp (j*w*No) .*X; % Equation 4

The DFT of x(n) is plotted in Figure 2; we see that it is complex. The DFT of Xeven(n) is plotted in Figure 3;

as expected, it is real.
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Figure 2. DFT of causal sequence x(n). Top: real part. Bottom: imaginary part.
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Figure 3. DFT of Xeven(n). Top:

Method 2: Periodic Extension inn

f/f
s

real part. Bottom: imaginary part.

Figure 1 (bottom) plots Xeven(n), which has finite length N = 16 samples. Its spectrum, which we
computed using the DFT, is of course discrete, as shown in Figure 3. You may recall that the Fourier
Transform of a periodic signal is discrete. The converse is also true: the inverse Fourier Transform of a

discrete spectrum is periodic. So, mathematically, our finite-length Xeven(n) can be viewed as periodic,
with each period replicating its N samples [3]. This is shown in Figure 4, where the top plot shows

Xeven(n), and the center plot shows Xeven(n) extended to be periodic.
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Figure 4. Top: sequence Xeven(n). Middle: periodic extension xp(n). Bottom: u(n) = xp(0:N-1) .

For our periodic sequence xp(n) we can state:
xp,(n+ N) = x,(n) (7

Thus,
xp(N—1) =x,(—1)
xp(N —2) = x,(=2) etc. (8)

If we define u(n)= xp(0:N-1), then u(n) is as shown in Figure 4 (bottom). Conveniently, the time index n of
u(n) matches that used in the DFT formula (see Appendix). Note that u(n) has even symmetry with
respect to N/2 = 8 (not including the sample at N = 0). The DFT of u(n) is real, as we’ll show in the
following example.



Method 2 Example

Here is the Matlab code to find u(n) given Xeven(n), and compute its DFT.

fs= 1;
N= 16; samples length of x even
x even= [0 0 0 0 02812 13 128 2 00 0 0]1/57;

Hz sample frequency

o°  o°

xp= [x _even x even]; % periodic extension of x even (2 periods)
u= xp(9:24); % u = xp over n= 0:N-1

U= fft (u,N); % DFT

k= 0:N-1; % frequency index

f= k*fs/N; % Hz frequency

x_even, xp, and u are plotted in Figure 4. The DFT of u(n) is real and identical to the DFT we computed in
Example 1; see Figure 3.

From Equation 8, xp(N/2: N-1) = xp(-N/2: -1). That is, the samples of x, from N/2: N-1 match the
negative-time portion of xp. So, we can view the range n = N/2: N-1 as negative time, and any sequence

with non-zero samples in this range is non-causal. Common examples of non-causal sequences are any
periodic sequence, such as a cosine.

If we form the bottom plot of u(n) in Figure 4 into a circle, we get the three-dimensional plot of Figure 5.
The symmetry with respect to n=0 or n = N/2 is apparent. The plot shows the equivalence of Xeven(n)

and u(n). The plot can be viewed as periodic, with each period represented by one trip around the
circle.

Finally, a word about odd-symmetric sequences. An odd-symmetric sequence is centered at n = 0 and

Xodd(N) = -Xodd(-n). The DFT of such a sequence is pure imaginary. Examples of odd sequences are the
coefficients of FIR differentiators [4] and Hilbert transformers.
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Figure 5. Circular plot of u(n), N = 16.



Appendix: DFT Formula and the DFT Time-shift Property

For a discrete-time sequence x(n), the DFT is defined as:

N-1

x(k) = Z x(n)e 2ma/N (4 _ 1)

n=0
where

X(k) = discrete frequency spectrum of time sequence x(n)
N = number of samples of x(n) and X(k)

n =0: N-1 =time index

k = 0: N-1 = frequency index

Equation 1 calculates a single spectral component or frequency sample X(k). To find the whole spectrum
over k =0 to N-1, Equation 1 must be evaluated N times.

We see that, by definition, the DFT applies to a finite-length sequence of N samples. Equation 1 does
not contain variables for time and frequency, but uses time and frequency indices n and k instead. The
frequency index is sometimes referred to as “frequency bins.” For sample time of Ts, the discrete time
variable is given by:

t= nTs (A'Z)
For sample frequency fs = 1/Ts, the discrete frequency variable is given by:

f = k*fs/N (A-3)

While x(n) is normally a real sequence, X(k) is in general complex. For real x(n), the real part of X(k) is
even with respect to f = fs/2, and the imaginary part is odd.

Time-Shift Property
Figure A-1 (top) shows a sequence x(n). If we delay x(n) by No samples, we get the sequence:
y(m) = x(n — Ny) (A-4)

This sequence is shown in the bottom plot for No= 2. Using Equation A-1, we can write the DFT of y(n):



No+N-1

Y(k) = Z x(n — Ny)e i2ma/N (A-5)

n=N0

Now substitute m = n — Ng into this equation:

N-1
Y(k) — Z X(m)e—jZTtk(m+N0)/N (A _ 6)
m=0
or,
N-1
Y (k) = e —J2mNok/N Z X(m)e—janm/N (4 - 6)
m=0

Comparing this to Equation A-1, we see that the summation is just X(k), so we have:

Y (k) = e J2mNok/N x (I) (A—7)
Thus,
x(n— No) &= e ~J2mNok/N x () (A-18)
[ T
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Figure A-1. Top: Sequence x(n). Bottom: Shifted sequence y(n) = x(n — No) for No = 2.
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